

The 10th International Conference on Computer and Communications Management July 29-31, 2022 | Okayama University, Japan

Deep Learning based Micro-expression Recognition

Wenjuan Gong

China University of Petroleum (East China)

- The universal facial expressions include seven emotions anger, contempt, disgust, fear, joy, sadness, and surprise. Facial expressions typically last between 0.5 to 4 seconds.
- **Microexpressions**, however, are expressions that go on and off the face in a fraction of a second, sometimes as fast as **1/30 of a second**.
- Microexpression recognition (MER) is widely applied in:

Psychology Diagnosis

Teaching Assessment

Business Negotiations

Criminal Investigation

A survey on deep learning based micro-expression recognition

Meta-Learning Based Multi-Model Fusion Network

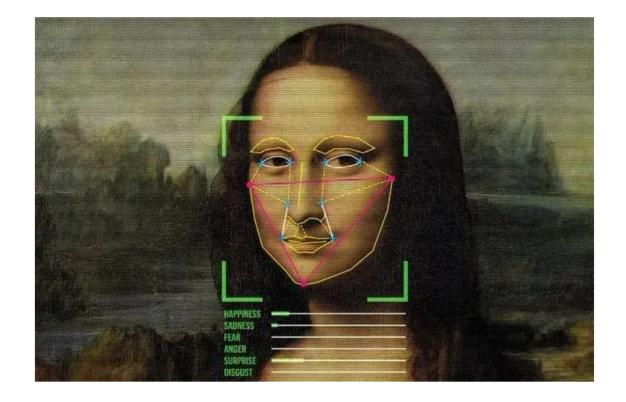
Deep learning-based microexpression recognition: a survey

Wenjuan Gong¹ · Zhihong An¹ · Noha M. Elfiky²

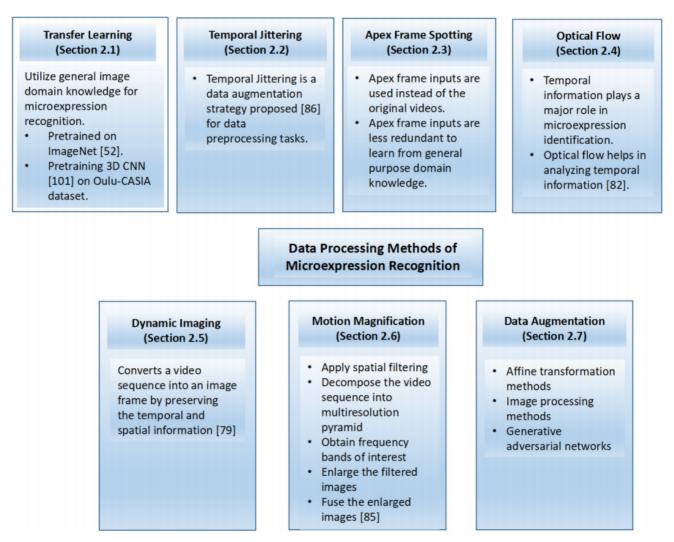
Received: 9 July 2021 / Accepted: 28 February 2022 / Published online: 1 April 2022 © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Deep learning based micro-expression recognition: a survey

1. We studied related works on deep learning based micro-expression recongnition


2. We fused several public datasets to form a composite dataset

3. We provided a baseline method on the composite dataset

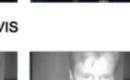

Micro-expressions are special facial expressions. Compared with ordinary expressions, micro-expressions mainly have the following characteristics:

- 1. The duration is short, usually only 1/25s~1/3s;
- 2. The action intensity is low and difficult to detect;
- 3. Produced in an unconscious state, usually difficult to disguise;
- 4. The analysis of micro-expression usually needs to be in the video, while the ordinary expression can be analyzed in the image.

Due to the short duration and low action intensity of micro-expressions, it is difficult to extract features, so appropriate data preprocessing and feature extraction are required.

 \succ Due to the difficulties in data collection and identification of micro-expressions, there are few existing microexpression datasets, which makes the application of deep learning in micro-expression recognition difficult.

(a) CASME II



(d) SMIC-HS

(e) SMIC-VIS

Happiness

Disgust

Contempt

Surprise

Repression

Fear

CASME II dataset

Disgust

Fear Anger SAMM dataset

(c) SAMM

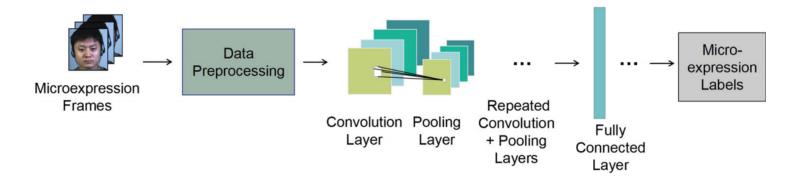
Temporal deep learning methods

Spatial deep learning methods

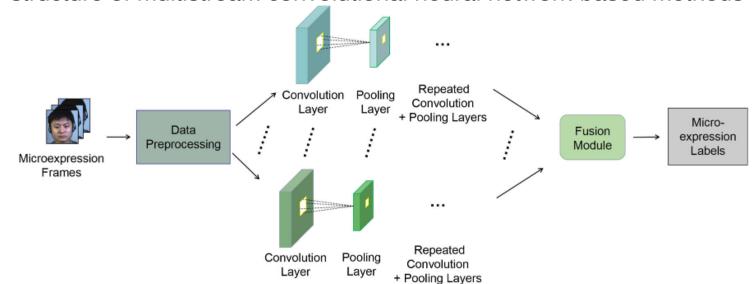
- Convolutional neural network-based method
- > Multi-stream convolutional neural networks based methods

Spatial-temporal deep learning methods

- 3D convolutional neural network-based methods
- Combined spatial-temporal methods


Hybrid approaches combining traditional and deep learning methods

Spatial-contextual deep learning methods


- Capsule neural network-based methods
- Graph convolutional networks based methods

> The Structure of Convolutional Neural Network based Methods

The structure of multistream convolutional neural network-based methods

Temporal deep learning methods

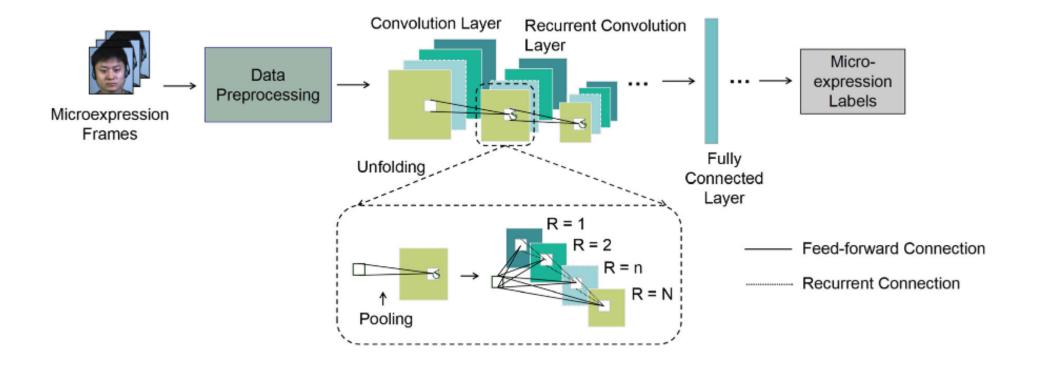
_Spatial deep learning methods

- Convolutional neural network-based method
- Multi-stream convolutional neural networks based methods

)4

Spatial-temporal deep learning methods

- > 3D convolutional neural network-based methods
- Combined spatial-temporal methods


- Capsule neural network-based methods
- Graph convolutional networks based methods

Hybrid approaches combining traditional and deep learning methods

> The structure of recurrent convolutional network-based methods

Temporal deep learning methods

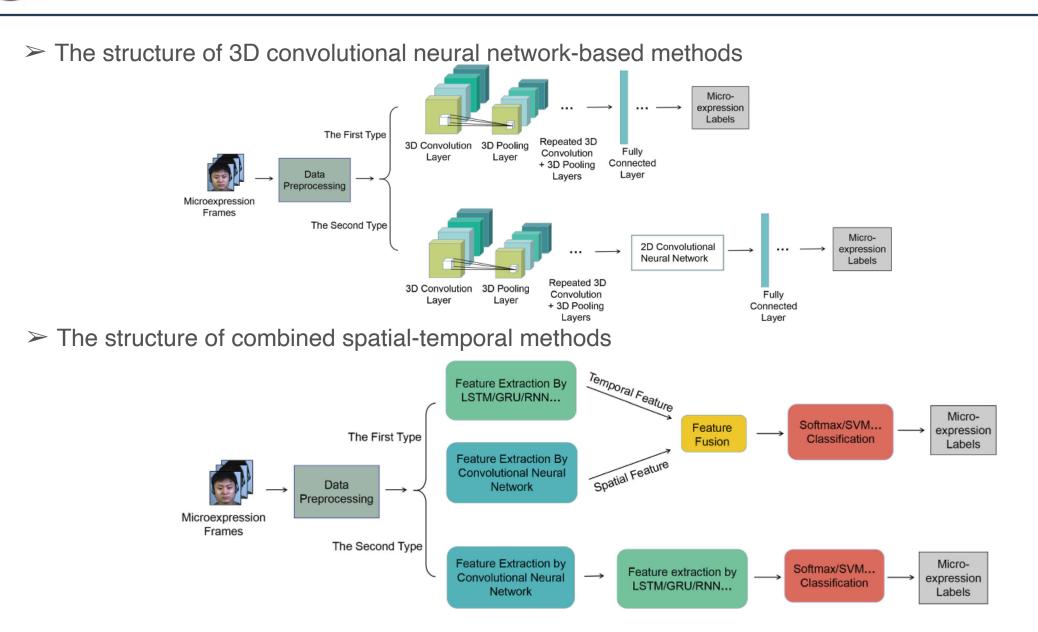
Spatial deep learning methods

- Convolutional neural network-based method
- Multi-stream convolutional neural networks based methods

03

Spatial-temporal deep learning methods

- > 3D convolutional neural network-based methods
- Combined spatial-temporal methods


05

Hybrid approaches combining traditional and deep learning methods

Spatial-contextual deep learning methods

- Capsule neural network-based methods
- Graph convolutional networks based methods

Temporal deep learning methods

Spatial deep learning methods

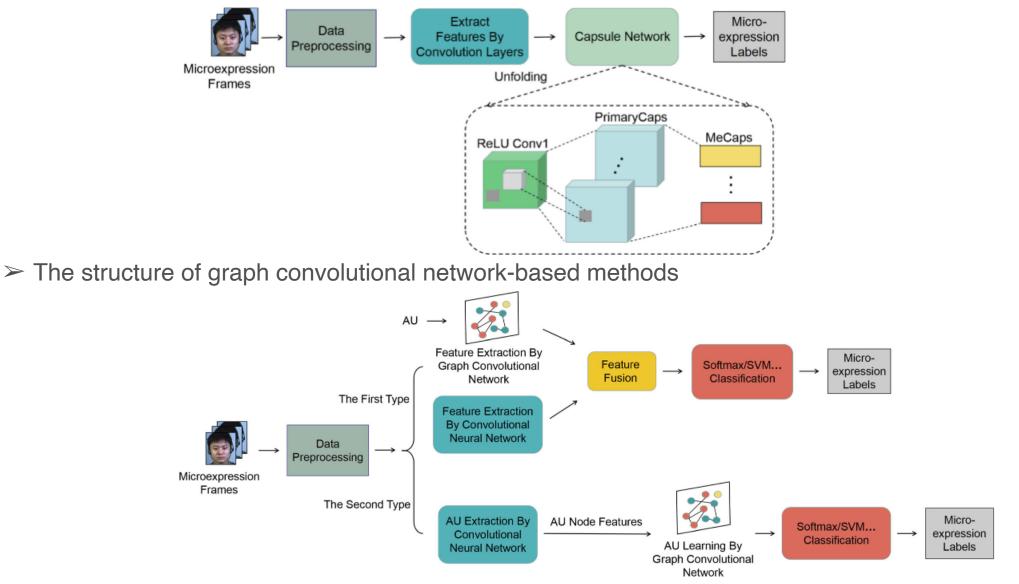
- Convolutional neural network-based method
- Multi-stream convolutional neural networks based methods

Spatial-temporal deep learning methods

- > 3D convolutional neural network-based methods
- Combined spatial-temporal methods

05

Hybrid approaches combining traditional and deep learning methods


Spatial-contextual deep learning methods

- Capsule neural network-based methods
- Graph convolutional networks based methods

Spatial-contextual deep learning methods

 \succ The structure of capsule neural network-based methods

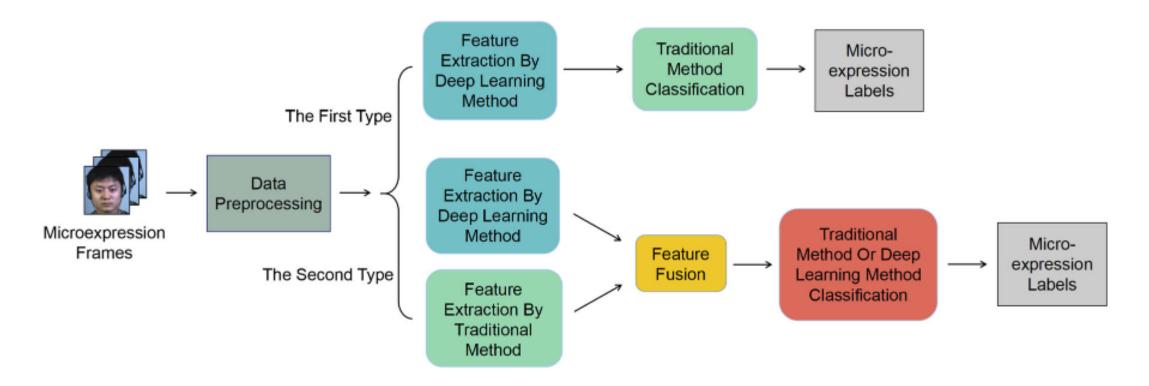
Temporal deep learning methods

Spatial deep learning methods

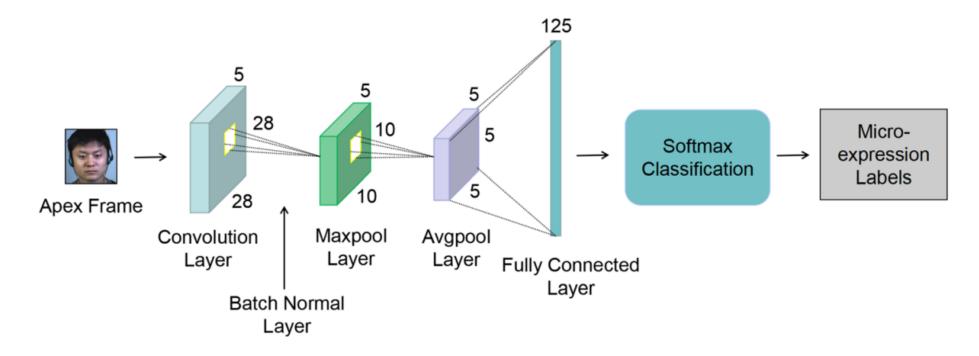
- Convolutional neural network-based method
- > Multi-stream convolutional neural networks based methods

Spatial-temporal deep learning methods

- > 3D convolutional neural network-based methods
- Combined spatial-temporal methods


Hybrid approaches combining traditional and deep learning methods

- Capsule neural network-based methods
- Graph convolutional networks based methods



> The structure of hybrid approaches combining traditional and deep learning methods

Five datasets (the CASME database, the CASME II database, the CAS(ME)² database, the SMIC database, and the SAMM dataset) were fused to form two new datasets (the 4-class fused dataset and the 9-class fused dataset), and use these as the baseline model input.

	Evaluation Method				-class Fused	Dataset	9-clas	s F	use	d I	Data	ase	t			
	LOVO		LOVO 47.32%		26.39%						-					
Negetius	66	15	9	22	ε		Anger -	11	0	0	1	0	1	2	0	1
Negative –					- 7	- 7 0	Sadness -	6	0	0	0	0	0	5	0	5
Positive -	A (- 6	- 4	able	Surprise-	4	0	2	0	1	0	5	1	3
	26	39	22	25	- 1	Truth Lables	Fear -	7	0	1	0	0	0	5	0	3
						Tru	Other -	6	0	1	0	1	0	8	0	0
Surprise-	33	25	24	30	- 1	Ground	Happiness -	8	0	1	0	0	0	7 8	0 2	
			_		-1		Disgust – Repression –	1	0	0	0	1	0	° 7	2	4
Other -	23	5	1	83	- 1		Tense -	0	0	0	0	0	0	0	0	, 16
	v ² Predi	Q00 cted Mic	, so o co co co co co co co co co co co co	sions								icro	, vol.	ressi	ons	10,02



Micro-expression dataset collection

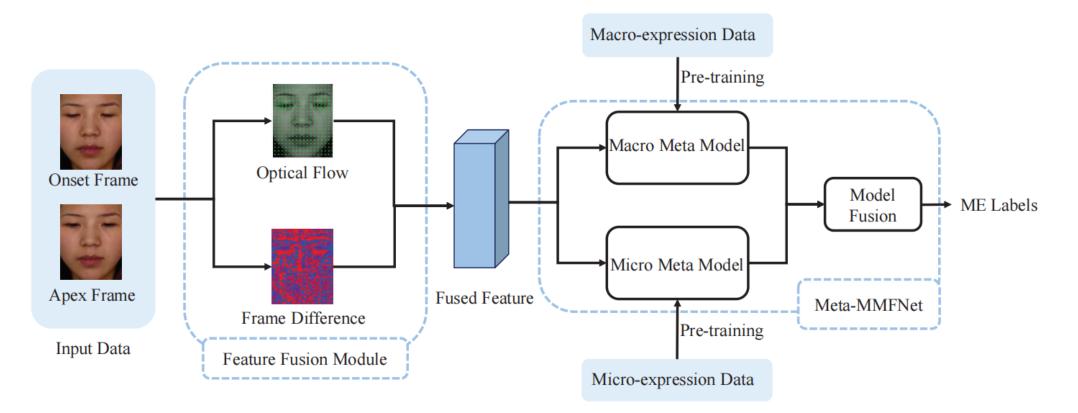
Optimizing network structure

Multimodal information for microexpression recognition

Meta-MMFNet: Meta-Learning Based Multi-Model Fusion Network for Micro-Expression Recognition

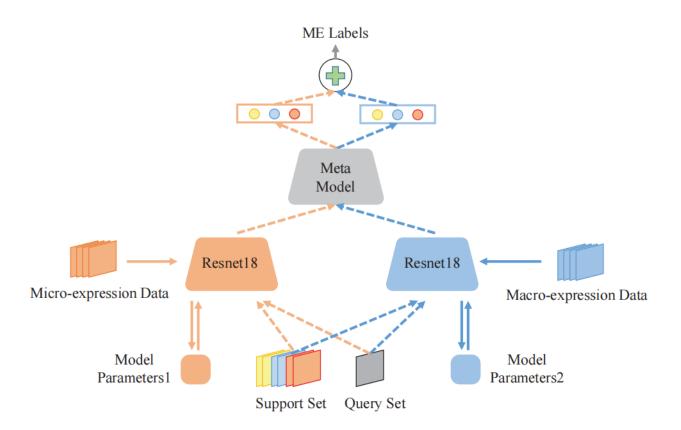
WENJUAN GONG and YUE ZHANG, China University of Petroleum (East China), China WEI WANG, Institute of Automation Chinese Academy of Sciences, China PENG CHENG, Institute of High Performance Computing, A*STAR, Singapore JORDI GONZÀLEZ, Computer Vision Center, Autonomous University of Barcelona, Spain

Meta-Learning Based Multi-Model Fusion Network


1. Meta-MMFNet fuses optical flow and frame difference features

2. Meta-MMFNet fuses micro-expression pretrained model and macro-expression pretrained model

3. Meta-MMFNet achieves state-of-art performances



The overall structure of the proposed Meta-learning based Multi-model Fusion Network (Meta-MMFNet) Method.

- > The Network structure
 - Meta-learning framework

- > The Network structure
 - Loss function:

$$w_c = \frac{1}{|S_c|} \sum_{x \in S_c} f_{\theta}(x),$$

$$p_i^c = p(y = c | x_i) = \frac{exp(\langle f_{\theta}(x_i), w_c \rangle)}{\sum_{c'} exp(\langle f_{\theta}(x_i), w_{c'} \rangle)},$$

$$Loss = -\sum_{i=1}^{n} Y_i log P_i,$$

$$d_{sum}^i = d_{micro}^i + \alpha d_{macro}^i, i \in \{1, 2, \dots, c\},\$$

Models	Dataset					
Wodels	CASME	CASME II	SMIC			
Micro-model	0.6815	0.7733	0.6220			
Macro-model	0.6051	0.7733	0.5244			
Meta-MMFNet	0.6959	0.8095	0.6313			

Table 4. Performance Comparisons between the Proposed Meta-MMFNet and the State-of-the-art Methods on the CASME Dataset

Methods	CASME Dataset						
Methods	Disgust	Surprise	Repression	Tense	Overall		
STCLQP [14]	0.64	0.50	0.53	0.58	0.5731		
LBP-SIP [48]	-	-	-	-	0.3684		
FHOFO [11]	-	-	-	-	0.6599		
MER-RCNN [52]	-	-	-	-	0.632		
STLBP-RIP [13]	0.5682	0.6	0.4211	0.8136	0.5906		
DiSTLBP-RIP [13]	0.7273	0.6	0.5263	0.6667	0.6433		
LGCcon [20]	0.57	0.8	0.21	0.77	0.6082		
3DFCNN [17]	-	-	-	-	0.5444		
Our Macro-model	0.625	0.8889	0.4242	0.6061	0.6051		
Our Micro-model	0.7	0.8889	0.5758	0.6667	0.6815		
Our Meta-MMFNet	0.7179	0.9412	0.5357	0.6875	0.6959		

Table 3. Ablation Study

Table 5. Performance Comparisons between the Proposed Meta-MMFNet and the State-of-the-art Methods on the CASME II Dataset

Methods		CASME II Dataset							
Methous	Surprise	Repression	Happiness	Disgust	Overall				
DTCM [28]	-	-	-	-	0.7206				
Our Macro-model	0.8929	0.5926	0.6563	0.8571	0.7733				
Our Micro-model	0.9643	0.5926	0.5313	0.8889	0.7733				
Our Meta-MMFNet	0.8929	0.5926	0.6897	0.9206	0.8095				

Table 6. Performance Comparisons between the Proposed Meta-MMFNet and the State-of-the-art Methods on the SMIC Dataset

Mathada	SMIC Dataset					
Methods	Surprise	Positive	Negative	Overall		
LBP-SIP [48]	-	-	-	0.4212		
FDM [54]	0.53	0.66	0.41	0.5488		
MER-RCNN [52]	-	-	-	0.571		
FHOFO [11]	-	-	-	0.5122		
Hierarchical STLBP-IP [61]	-	-	-	0.6078		
FR [60]	-	-	-	0.579		
3DFCNN [17]	-	-	-	0.5549		
Our Macro-model	0.6512	0.5686	0.4143	0.5244		
Our Micro-model	0.7442	0.5294	0.6143	0.6220		
Our Meta-MMFNet	0.7561	0.5600	0.6087	0.6313		

Table 7. Composite Dataset Annotations

Datasets	Composite Database Evaluation (CDE) Dataset Categories					
Datasets	Surprise	Positive	Negative			
CASME	Surprise	Happiness	Disgust,Repression,Tense,Sadness,Fear,Comtempt			
CASME II	Surprise	Happiness	Disgust,Repression,Fear,Sadness			
SMIC	Surprise	Positive	Negative			

"positive," "negative," and "surprise." The relations between the original and composite dataset annotations are listed in Table 7.

Method	Surprise	Positive	Negative	Average Accuracy	Overall Accuracy
LBP-SIP [48]	-	-	-	0.3948	-
FHOFO [11]	-	-	-	0.5861	-
3DFCNN [17]	-	-	-	0.5497	-
Our Meta-MMFNet	-	-	-	0.7122	-
Our Meta-MMFNet_retrain	0.8736	0.5275	0.7855	-	0.7526

Table 8. Experimental Results of the Composite Database Evaluation

The 10th International Conference on Computer and Communications Management July 29-31, 2022 | Okayama University, Japan

Thank You For Listening!

E-mail: wenjuangong@upc.edu.cn

MIGroup: http://wenjuangong.com/

