计算机视觉

中国石油大学(华东) 青岛软件学院、计算机科学与技术学院 软件工程系 宫文娟

计算机视觉基础


- 第一章 概论
- 第二章 基础知识
- 第三章 图像分类
- 第四章图像语义分割
- 第五章 目标检测
- 第六章识别
- 第七章目标跟踪
- 第八章 多目视觉
- 第九章视觉问答

第一章概论

- 1.1 计算机视觉的定义
- 1.2 计算机视觉的发展历史
- 1.3 计算机视觉的主要研究内容
- 1.4 计算机视觉的主要应用
- 1.5 计算机视觉的特点
- 1.6 实例:基于词袋的图像分类方法

计算机视觉方法也称为机器视觉方法,是基于图像处理、机器学习、模式识别等手段,让计算机(或者机器)能像人通过眼睛观察世界一样去理解世界的一类方法。

Computer vision is about "computing properties of the 3-E world from one or more digital images." (Trucco & Verri 1998)

计算机视觉

输入数据: 二维数据或随时间变化的二维数据 (通常是图像或者视频)

回答问题:输入数据中有什么物体,物体在什么地方,物体之间有什么关系等

计算机图形学

输入数据: 三维数据信息

回答问题:如何构建三维数据以如何投影得到二维图像

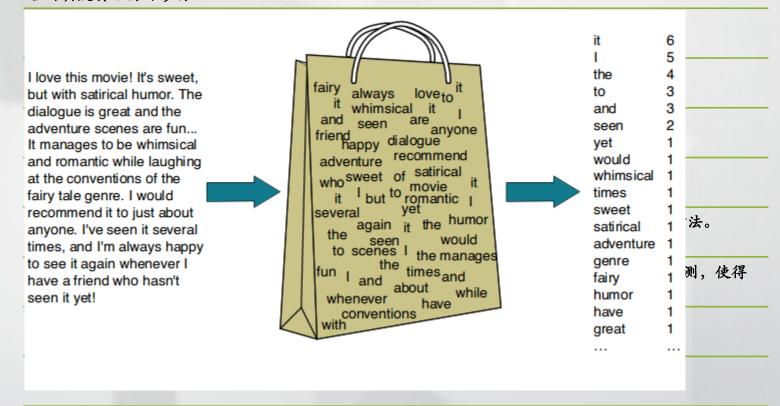
1959年,两位神经生理学家David Hube 和Torsten Wiesel研究了猫的视皮质神经元的特性、反应、视觉经验对其皮质结构的影响。

1959年, Russel Kirsch等研制了设备,可以将影像转换成坐标方格样式的数字。

1963年,MIT的Larry Roberts提出将世界分解成简单几何体的机器感知模型。

20世纪60年代,人工智能成为一个学科。

1982年,英国神经科学家David Marr发表了《视觉:人类表示和处理视觉信息的计算研究》。


1986年, 韦兰研究公司的Robert K. McConnell在申请的专利中提出定向梯度直方图 (HOG) 方法。

2005年,法国国家科学院的Navneet Dalal和Bill Triggs在CVPR上发表文章,用HOG进行行人检测,使得HOG得到广泛应用。

1999年, Lowe提出尺度不变特征变换(SIFT)方法,并在2004年获得专利。

1954年,Zellig Harris提出词袋并应用在语境分析中。

1959年,两位神经生理学家David Hube 和Torsten Wiesel研究了猫的视皮质神经元的特性、反应、视觉经验对其皮质结构的影响。

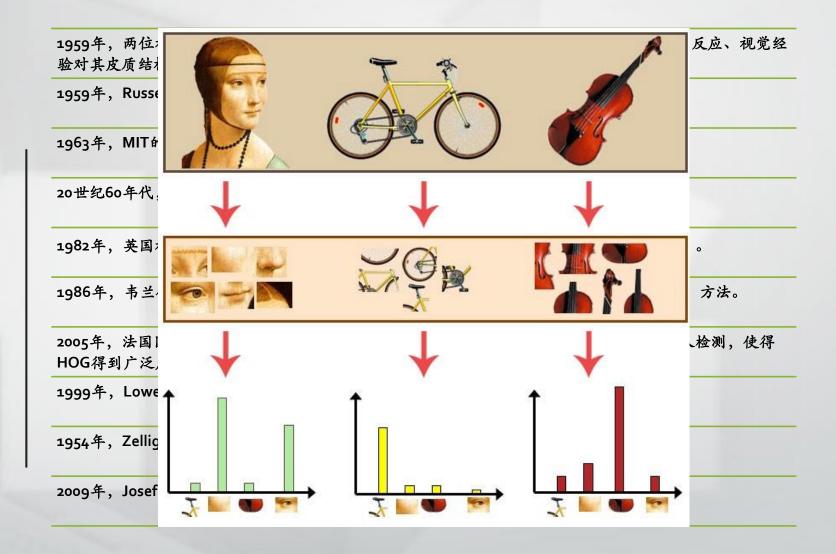
1959年,两位神经生理学家David Hube 和Torsten Wiesel研究了猫的视皮质神经元的特性、反应、视觉经验对其皮质结构的影响。

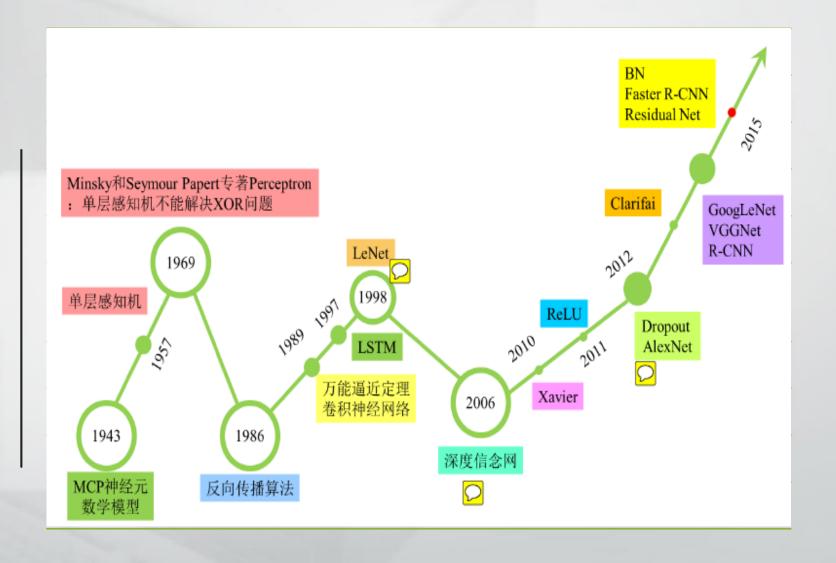
1959年, Russel Kirsch等研制了设备,可以将影像转换成坐标方格样式的数字。

1963年,MIT的Larry Roberts提出将世界分解成简单几何体的机器感知模型。

20世纪60年代,人工智能成为一个学科。

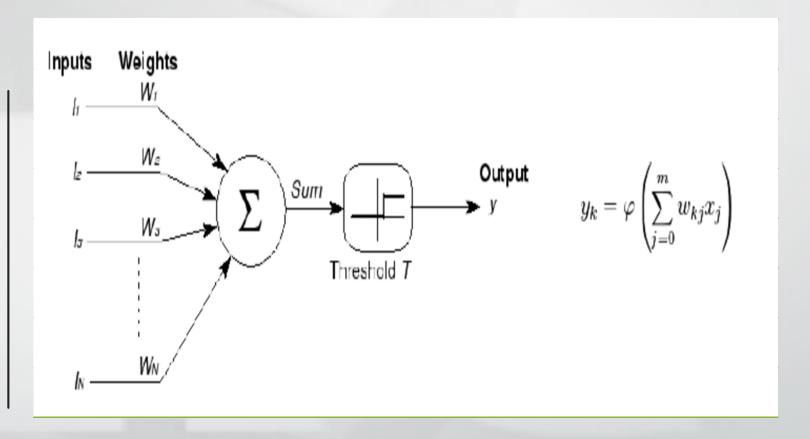
1982年,英国神经科学家David Marr发表了《视觉:人类表示和处理视觉信息的计算研究》。


1986年, 韦兰研究公司的Robert K. McConnell在申请的专利中提出定向梯度直方图 (HOG) 方法。


2005年,法国国家科学院的Navneet Dalal和Bill Triggs在CVPR上发表文章,用HOG进行行人检测,使得HOG得到广泛应用。

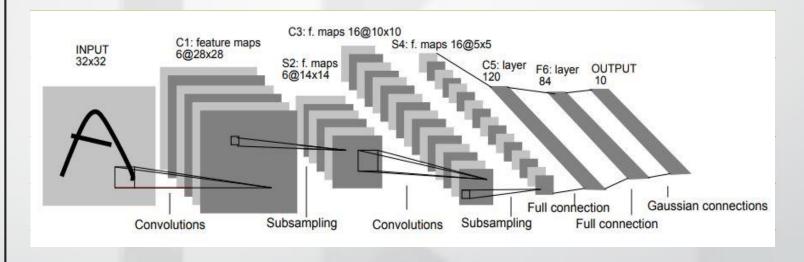
1999年, Lowe提出尺度不变特征变换(SIFT)方法,并在2004年获得专利。

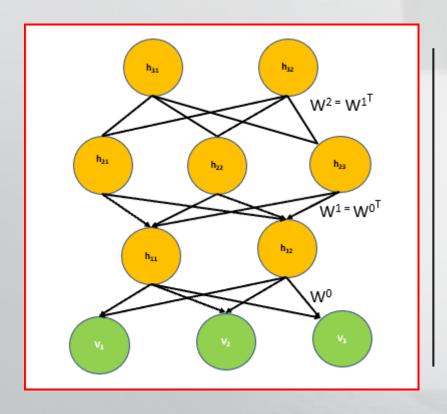
1954年, Zellig Harris提出词袋 (Bag of Words) 并应用在语境分析中。


2009年, Josef Sivic采用词袋模型 (Bag of Visual Words) 解决计算机视觉问题。

1943年,神经科学家麦卡洛克W.S.McCilloch 和数学家皮兹W.Pitts提出MCP神经元模型。

1.2 计算机视觉的发展历史

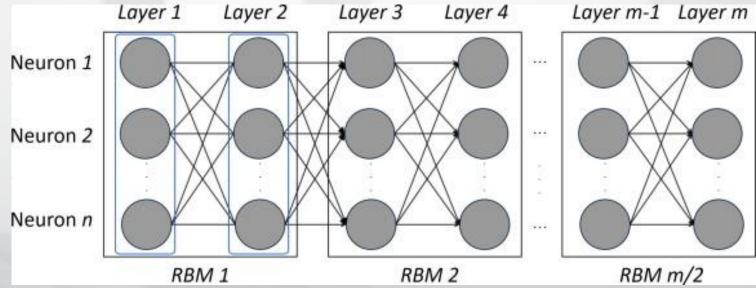



1943年,神经科学家麦卡洛克W.S.McCilloch 和数学家皮兹W.Pitts提出MCP神经元模型。

1969年, 计算机科学家 Rosenblatt提出了两层神经元组成的神经网络, 也称为单层感知机Perceptron。 Minsky和Seymour Papert研究发现单层感知机不能解决XOR问题。

1986年,神经网络之父 Geoffrey Hinton 发明了适用于多层感知器MLP的BP (Backpropagation) 算法反向 传播。

1998年, Yan Le Cunn提出LeNet,用于手写字体识别。


1943年,神经科学家麦卡洛克W.S.McCilloch 和数学家皮兹W.Pitts提出MCP神经元模型。

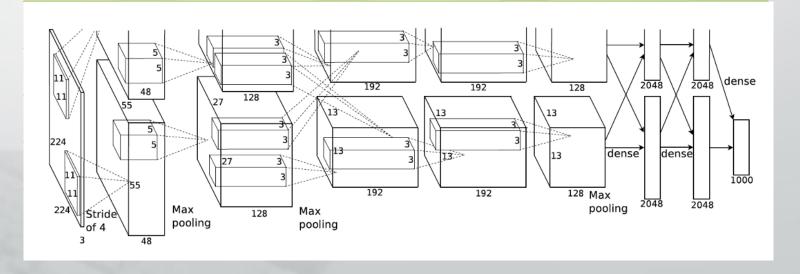
1969年, 计算机科学家 Rosenblatt提出了两层神经元组成的神经网络, 也称为单层感知机Perceptron。 Minsky和Seymour Papert研究发现单层感知机不能解决XOR问题。

1986年,神经网络之父 Geoffrey Hinton 发明了适用于多层感知器MLP的BP (Backpropagation) 算法反向 传播。

1998年, Yan Le Cunn提出LeNet,用于手写字体识别。

2006年, Geoffrey Hinton和他的学生提出了深度置信网络。

1943年,神经科学家麦卡洛克W.S.McCilloch 和数学家皮兹W.Pitts提出MCP神经元模型。


1969年, 计算机科学家 Rosenblatt提出了两层神经元组成的神经网络, 也称为单层感知机Perceptron。 Minsky和Seymour Papert研究发现单层感知机不能解决XOR问题。

1986年,神经网络之父Geoffrey Hinton 发明了适用于多层感知器MLP的BP (Backpropagation) 算法反向传播。

1998年, Yan Le Cunn提出LeNet, 用于手写字体识别。

2006年, Geoffrey Hinton和他的学生提出了深度置信网络。

2012年, Hinton课题组为了证明深度学习的潜力,首次参加ImageNet图像识别比赛,其通过构建的CNN 网络AlexNet一举夺得冠军,且碾压第二名(SVM方法)的分类性能。也正是由于该比赛,CNN吸引到了 众多研究者的注意。

1943年,神经科学家麦卡洛克W.S.McCilloch 和数学家皮兹W.Pitts提出MCP神经元模型。

1969年, 计算机科学家 Rosenblatt提出了两层神经元组成的神经网络, 也称为单层感知机Perceptron。 Minsky和Seymour Papert研究发现单层感知机不能解决XOR问题。

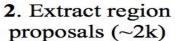
1986年,神经网络之父Geoffrey Hinton 发明了适用于多层感知器MLP的BP (Backpropagation) 算法反向 传播。

1998年, Yan Le Cunn提出LeNet, 用于手写字体识别。

2006年, Geoffrey Hinton和他的学生提出了深度置信网络。

2012年, Hinton课题组为了证明深度学习的潜力,首次参加ImageNet图像识别比赛,其通过构建的CNN 网络AlexNet一举夺得冠军,且碾压第二名(SVM方法)的分类性能。也正是由于该比赛, CNN吸引到了 众多研究者的注意。

2014年,谷歌提出GoogleLeNet;牛津大学的视觉几何组(Visual Geometry Group)提出VGG;Ross Girshick 等人提出R-CNN


R-CNN: Regions with CNN features

1. Input image

3. Compute CNN features

4. Classify regions

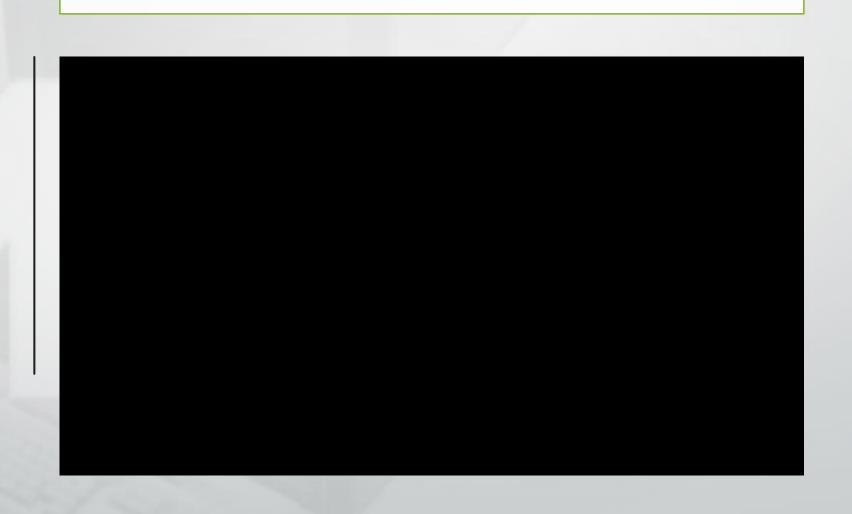
1943年,神经科学家麦卡洛克W.S.McCilloch 和数学家皮兹W.Pitts提出MCP神经元模型。

1969年, 计算机科学家 Rosenblatt提出了两层神经元组成的神经网络, 也称为单层感知机Perceptron。 Minsky和Seymour Papert研究发现单层感知机不能解决XOR问题。

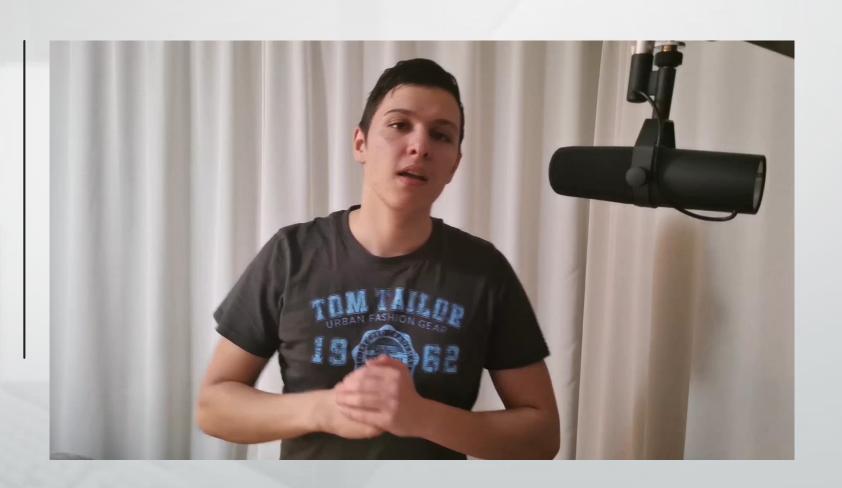
1998年, Yan Le Cunn提出LeNet, 用于手写字体识别。

2006年, Geoffrey Hinton和他的学生提出了深度置信网络。

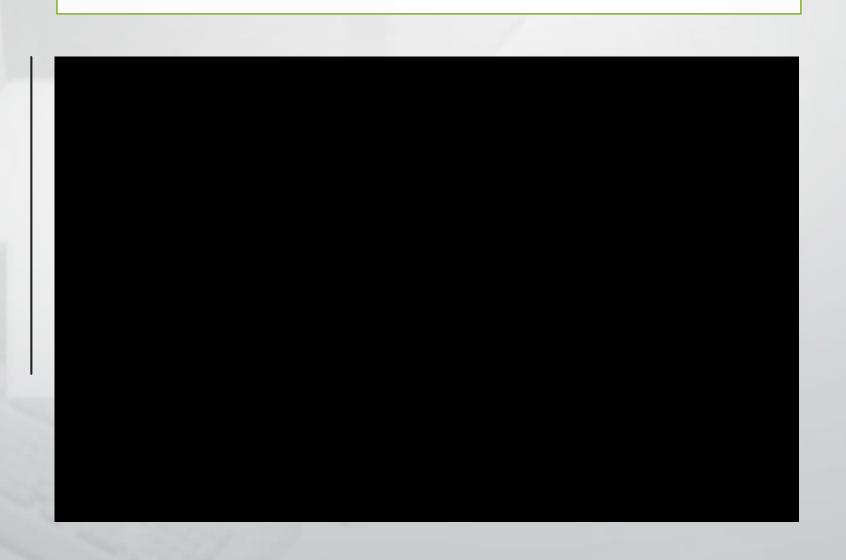
2012年, Hinton课题组为了证明深度学习的潜力,首次参加ImageNet图像识别比赛,其通过构建的CNN 网络AlexNet一举夺得冠军,且碾压第二名 (SVM方法)的分类性能。也正是由于该比赛, CNN吸引到了众多研究者的注意。

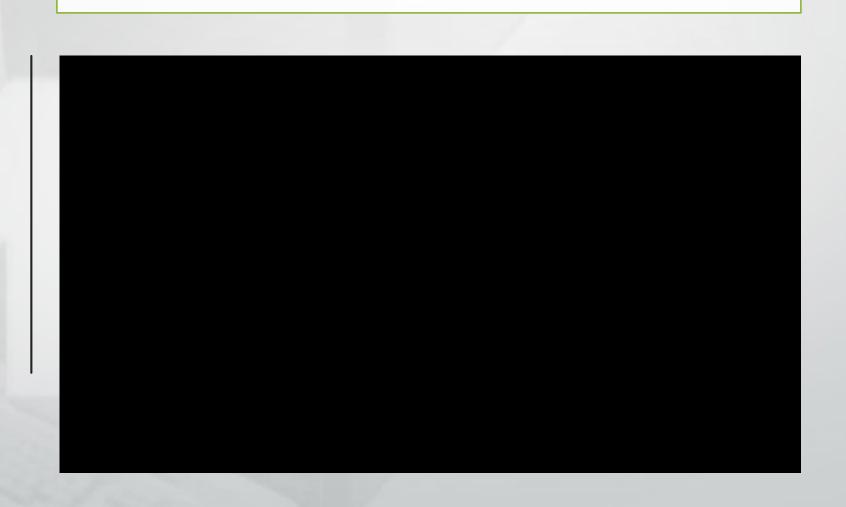

2014年,谷歌提出GoogleLeNet;牛津大学的视觉几何组(Visual Geometry Group)提出VGG;Ross Girshick 等人提出R-CNN

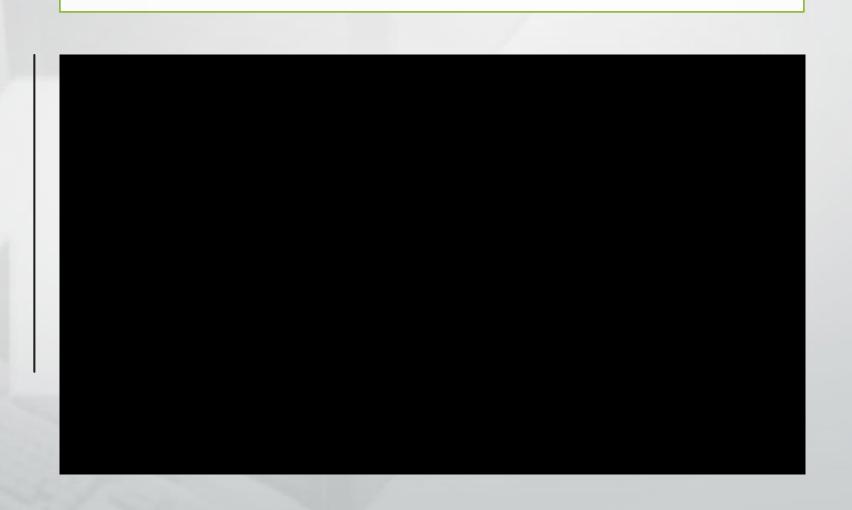
2015年,何凯明等提出了ResNet。



图像分类 (第三章)


图像分割 (第四章)


物体检测 (第五章)


运动物体跟踪 (第七章)

多目视觉 (第八章)

视觉问答 (第九章)

1.4 计算机视觉的主要应用

1.5 计算机视觉的特点

很多计算机视觉问题采用数字图像作为输入,最普遍是RGB图像。

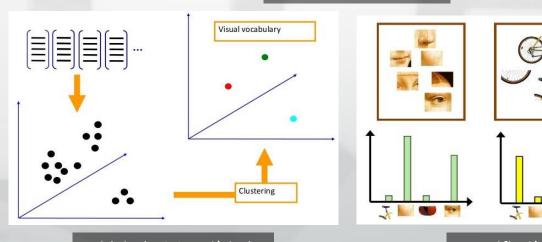
很多计算机视觉问题本身很主观,不能被很好的量化定义,例如:

- 表情识别中对一个人微笑、愤怒、开心、难过的定义
- 对一副图像是否美观的定义

1.6实例: 基于词袋的图像分类方法


(a) 原始图像采样得到 (b) 图像块

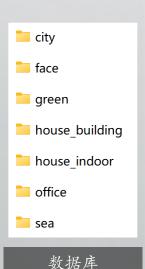
对这些图像块提取特征点(c)


对提取的特征点进行特征描述 (d)

对所有的训练图像进行聚类,得到的聚 类中心作为词典(e)

则每幅图像可以重新表示成基于词典的 直方图 (f)

(c) 提取SIFT特征点



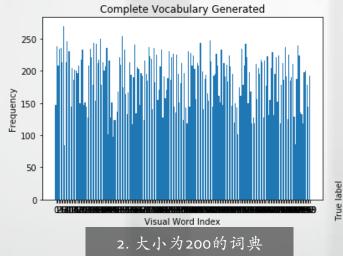
(de) 提取SIFT特征点

(f) 计算直方图

图1-2 基于词袋模型的表示方法的主要流程

1.6实例: 基于词袋的图像分类方法

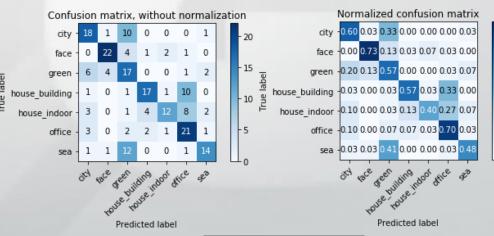
Train images path detected.


Descriptors vstacked.

Descriptors clustered.

Images features extracted.

Train images normalized.


1. 计算特征

accuracy score: 0.579

3. 识别结果

- 0.2

4. 混淆矩阵